Empirical Bayes Estimates for Large-Scale Prediction Problems.
نویسنده
چکیده
Classical prediction methods such as Fisher's linear discriminant function were designed for small-scale problems, where the number of predictors N is much smaller than the number of observations n. Modern scientific devices often reverse this situation. A microarray analysis, for example, might include n = 100 subjects measured on N = 10,000 genes, each of which is a potential predictor. This paper proposes an empirical Bayes approach to large-scale prediction, where the optimum Bayes prediction rule is estimated employing the data from all the predictors. Microarray examples are used to illustrate the method. The results show a close connection with the shrunken centroids algorithm of Tibshirani et al. (2002), a frequentist regularization approach to large-scale prediction, and also with false discovery rate theory.
منابع مشابه
Inference for the Proportional Hazards Family under Progressive Type-II Censoring
In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...
متن کاملSome New Developments in Small Area Estimation
Small area estimation has received a lot of attention in recent years due to growing demand for reliable small area statistics. Traditional area-specific estimators may not provide adequate precision because sample sizes in small areas are seldom large enough. This makes it necessary to employ indirect estimators based on linking models. Basic area level and unit level models have been extensiv...
متن کاملLimiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model
The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...
متن کاملApproximate Bayesian Model Selection with the Deviance Statistic
Bayesian model selection poses two main challenges: the specification of parameter priors for all models, and the computation of the resulting Bayes factors between models. There is now a large literature on automatic and objective parameter priors in the linear model. One important class are g-priors, which were recently extended from linear to generalized linear models (GLMs). We show that th...
متن کاملComparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches
This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Statistical Association
دوره 104 487 شماره
صفحات -
تاریخ انتشار 2009